1. Show the side-by-side graphs for the money market and the forex market (what I will call the iME diagram), and give the equations representing equilibrium in each.

\[\frac{M^s}{P} = L(i)Y \]

\[i = \bar{i} + \frac{E^e - E}{E} \]

2. Using this diagram, show how a significant one-time increase in the money supply \((M)\) would affect interest rates \((i)\) and the exchange rate \((E)\) in the short-run.

\(M \uparrow \quad i \downarrow \quad E \uparrow \)

(Continued on back)
3. How should the above increase in M affect the price level P in the long-run? What is the equation for purchasing power parity in the long-run? Using this diagram, how should this change in the expected forex rate (E^e) affect i and spot E in the short-run?

\[P \text{ should rise too. } E = P/P^* \text{ in long-run, so } E^e \uparrow. \]

4. Suppose instead that normalized money demand (L) rises independent of any effect from i, as people move from bonds and other financial assets to cash and guaranteed deposits. How would this affect i and spot E in the short-run? How would this affect P and E^e in the long-run, and would it matter if the change in L was expected to be temporary or permanent? If it was permanent, how would this in turn affect spot E in the short-run?

In the short-run, $i \uparrow$ and E^e. This should cause $P \downarrow$ in long-run (Deflation), if it is permanent. So $E^e \downarrow$ in long run, if permanent. So $E \downarrow$ more now.

If $L \uparrow$ is temporary, P and E^e should not fall.